A Statistical Analysis of the S5 Assessment Scores from the Elm City Stories Study

The Student's T-eam: Noah Cline, Carissa French, William Laubscher, & Brendan Pinkerton

*All non-visualization Images are Screenshots from the game

Approach and Data Analysis

- We thought about the Study's purpose:
 - How did the game affect overall understanding of sexual health and substance abuse?
- We played the game and found:
 - Cyclical gameplay
 - Hard to find answers in just the play data
- Using Game Data and S5 Scores
 - Is there a correlation?
 - If so, how are they related?

Cleaning the Data

- Data Removed:
 - Players without S5 assessment score data
 - Players with total playtime determined to be an outlier as determined by the IQR method.
 - Many players with anomalous event_time_dbl data (100+ hours played)
 - Entries for Event ID's and variables specific to minigame data.
 - Entries associated with an event_id classified as "Minigame General" were left in.
 - Entries associated with event_id 207 (Panning the scene)
- Left With:
 - 32 potential variables of interest.
 - 178,999 observations.
 - All data associated 43 specific students.

Final Model

- Fit a polynomial model using the max time spent playing and total number of events which occurred during play per player to predict S5 assessment scores.
 - Use Time_Spent for max time spent per player.
 - Use Total_Events for total number of events which occurred during play.
- We selected a 7th degree polynomial model after using LOOCV to determine the polynomial model with the smallest CV error.

Merged Degree vs MSE (LOOCV) Plot

Residuals:

 Min
 1Q
 Median
 3Q
 Max

 -8.1087
 -0.3953
 0.3319
 0.9625
 3.0925

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	14.9469	0.1321	113.124	<2e-16 ***
poly(Time_Spent, 7)1	-3.1385	3.1579	-0.994	0.3219
poly(Time_Spent, 7)2	-2.2225	3.2028	-0.694	0.4888
poly(Time_Spent, 7)3	-0.1498	3.1078	-0.048	0.9616
poly(Time_Spent, 7)4	1.3001	3.7210	0.349	0.7273
poly(Time_Spent, 7)5	-6.1390	4.8108	-1.276	0.2040
poly(Time_Spent, 7)6	-2.8423	4.7248	-0.602	0.5484
poly(Time_Spent, 7)7	4.1466	3.3210	1.249	0.2138
poly(Total_Events, 7)1	4.7920	3.6376	1.317	0.1898
poly(Total_Events, 7)2	1.7069	3.2455	0.526	0.5997
poly(Total_Events, 7)3	-1.7737	4.4837	-0.396	0.6930
poly(Total_Events, 7)4	3.4269	4.2735	0.802	0.4239
poly(Total_Events, 7)5	-0.7643	4.6110	-0.166	0.8686
poly(Total_Events, 7)6	-3.9908	3.2448	-1.230	0.2207
poly(Total_Events, 7)7	4.6728	2.5118	1.860	<u>0.0649</u> .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.671 on 145 degrees of freedomMultiple R-squared: 0.2214,Adjusted R-squared: 0.1462F-statistic: 2.945 on 14 and 145 DF, p-value: 0.0005692

R Summary Output

Testing Assumptions

- Shapiro-Wilk Test conducted on all variables
 - Variables are exceptionally non-normal
 - p-value ≅ 0
 - Transformations seemed to have little effect
 - Y², log(Y), sqrt(Y), Y^{1/3}, etc
- Box-Cox indicated optimal $\lambda = 2$
- Residual plots (see following slide)

Residual Graphs

And that's all, Folks