A Statistical Analysis of the S5 Assessment Scores from the Elm City Stories Study

The Student's T-eam: Noah Cline, Carissa French, William Laubscher, \& Brendan Pinkerton

Approach and Data Analysis

- We thought about the Study's purpose:
- How did the game affect overall understanding of sexual health and substance abuse?
- We played the game and found:
- Cyclical gameplay
- Hard to find answers in just the play data

- Using Game Data and S5 Scores
- Is there a correlation?
- If so, how are they related?

Cleaning the Data

- Data Removed:
- Players without S5 assessment score data
- Players with total playtime determined to be an outlier as determined by the IQR method.
- Many players with anomalous event_time_dbl data (100+ hours played)
- Entries for Event ID's and variables specific to minigame data.
- Entries associated with an event_id classified as "Minigame General" were left in.
- Entries associated with event_id 207 (Panning the scene)
- Left With:
- 32 potential variables of interest.
- 178,999 observations.
- All data associated 43 specific students.

Final Model

- Fit a polynomial model using the max time spent playing and total number of events which occurred during play per player to predict S5 assessment scores.
- Use Time_Spent for max time spent per player.
- Use Total_Events for total number of events which occurred during play.
- We selected a 7th degree polynomial model after using LOOCV to determine the polynomial model with the smallest CV error.

Min	1Q	Median	3Q	Max
-8.1087	-0.3953	0.3319	0.9625	3.0925

Coefficients:
(Intercept)
poly(Time_Spent, 7)1
poly(Time_Spent, 7)2
poly(Time_Spent, 7)3
poly(Time_Spent, 7)4
poly(Time_Spent, 7)5
poly(Time_Spent, 7)6
poly(Time_Spent, 7)7
poly(Total_Events, 7)1
poly(Total_Events, 7)2
poly(Total_Events, 7)3
poly(Total_Events, 7)4
poly(Total_Events, 7)5
poly(Total_Events, 7)6
poly(Total_Events, 7)7

Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
14.9469	0.1321	113.124	$<2 \mathrm{e}-16 * * *$
-3.1385	3.1579	-0.994	0.3219
-2.2225	3.2028	-0.694	0.4888
-0.1498	3.1078	-0.048	0.9616
1.3001	3.7210	0.349	0.7273
-6.1390	4.8108	-1.276	0.2040
-2.8423	4.7248	-0.602	0.5484
4.1466	3.3210	1.249	0.2138
4.7920	3.6376	1.317	0.1898
1.7069	3.2455	0.526	0.5997
-1.7737	4.4837	-0.396	0.6930
3.4269	4.2735	0.802	0.4239
-0.7643	4.6110	-0.166	0.8686
-3.9908	3.2448	-1.230	0.2207
4.6728	2.5118	1.860	$\underline{0.0649}$.

R Summary Output

Residual standard error: 1.671 on 145 degrees of freedom
Multiple R-squared: $\underline{\mathbf{0 . 2 2 1 4}} \quad$ Adjusted R-squared: 0.1462
F-statistic: 2.945 on 14 and 145 DF, p-value: $\underline{0.0005692}$

Testing Assumptions

- Shapiro-Wilk Test conducted on all variables
- Variables are exceptionally non-normal
- p-value $\cong 0$
- Transformations seemed to have little effect
- $Y^{2}, \log (Y), \operatorname{sqrt}(Y), Y^{1 / 3}$, etc
- Box-Cox indicated optimal $\lambda=2$
- Residual plots (see following slide)

Residual Graphs

And that's all, Folks

